Assignment 9.

Taylor Series.

This assignment is due Wednesday, March 30. Collaboration is welcome. If you do collaborate, make sure to write/type your own paper. This assignment is long¹, pace yourself.

In this homework, you can take for granted basic inequalities involving limsup and arithmetic operations. You also can take for granted that $\sqrt[n]{\frac{n!}{n^n}} \to \frac{1}{e}$ as $n \to \infty$.

- (1) In this problem we look into single-valued versions of complex logarithm and z^{α} . Let $G = \mathbb{C} \setminus (-\infty, 0]$, that is the complex plane without the non-positive part of real axis.
 - (a) For $z \in G$, define

$$\ln z = \ln |z| + i \arg z.$$

(In particular, $-\pi < \text{Im} \ln z < \pi$.) Show that $\ln z$ is analytic on the domain G, and find its derivative (among other things, you can use Problem 5 of HW3).

- (b) Use Taylor series theorem to find Taylor series for $\ln(1 + z)$ at z = 0. What is the radius of convergence?
- (c) For $\alpha \in \mathbb{C}$ and $z \in G$, define

$$z^{\alpha} = \exp(\alpha \ln z).$$

Argue that z^{α} is analytic on G and find its derivative. (*Hint:* Use chain rule.)

(d) Use Taylor series theorem to find Taylor series for $(1 + z)^{\alpha}$ at z = 0. What is the radius of convergence? REMARK. It is convenient to denote $\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$ by $\binom{\alpha}{n}$.

(2) Find the radius of convergence of each of the following power series.

(a)
$$\sum_{n=1}^{\infty} n^k z^n \ (k=0,1,2,\ldots);$$
 (b) $\sum_{n=1}^{\infty} n^n z^n;$ (c) $\sum_{n=1}^{\infty} (2+(-1)^n)^n z^{2n};$
(d) $\sum_{n=1}^{\infty} (\cos in) z^n;$ (e) $\sum_{n=1}^{\infty} \frac{n^k}{n!} z^n;$ (f) $\sum_{n=1}^{\infty} (n+a^n) z^n \ (a \in \mathbb{C});$
(g) $\sum_{n=1}^{\infty} 3^n z^{n^2};$ (h) $\sum_{n=1}^{\infty} 2^n z^{n!}.$

- see next page -

(3) Given that the radius of convergence of the power series $\sum_{n=1}^{\infty} c_n z^n$ is R $(0 < R < \infty)$, what is the radius of convergence of the following series?

(a)
$$\sum_{n=1}^{n} n^k c_n z^n \ (k=0,1,2,\ldots);$$
 (b) $\sum_{n=1}^{n} (2^n - 1) c_n z^n;$ (c) $\sum_{n=1}^{n} \frac{c_n}{n!} z^n;$
(d) $\sum_{n=1}^{\infty} c_n^k z^n \ (k=0,1,2,\ldots);$ (e) $\sum_{n=1}^{\infty} c_n z^{2n};$ (f) $\sum_{n=1}^{\infty} c_n z^{n^2}.$

(4) Let the radii of convergence of the power series ∑[∞]_{n=1} a_nzⁿ and ∑[∞]_{n=1} b_nzⁿ equal R₁ and R₂, respectively. Let R be the radius of convergence of
(a) ∑[∞]_{n=1} (a_n + b_n)zⁿ. Prove that R ≥ min(R₁, R₂).
(b) ∑[∞]_{n=1} a_nb_nzⁿ. Prove that R ≥ R₁R₂.

(*Hint:* In (a), it's easier to argue by basic properties of convergence. In (b), by Cauchy-Hadamard.)

- (5) In this problem, we figure out whether the inequality in Problem 4a can be made an equality.
 - (a) Give an example of two power series $\sum_{n=1}^{\infty} a_n z^n$ and $\sum_{n=1}^{\infty} b_n z^n$ with the same finite radius of convergence $R_1 = R_2$, such that the radius of convergence of $\sum_{n=1}^{\infty} (a_n + b_n) z^n$ is infinite.
 - (b) If $R_1 < R_2$, can the radius of convergence of $\sum_{n=1}^{\infty} (a_n + b_n) z^n$ be strictly greater than R_1 ? (*Hint:* Argue by basic properties of convergence.)
- (6) Give an alternative prove of Liouville's theorem, based on the use of Cauchy integral formula as follows. Considering the integral

$$\int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} dz,$$

where $a \neq b$, |a| < R, |b| < R, and take $R \to \infty$.